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ABSTRACT

A weak constraint solution was introduced to reduce the water budget imbalance that ap-

pears in land data assimilation as a result of state updates. Constrained Kalman Filter

results were shown to be identical in single- or two-stages solutions whereas constrained En-

semble Transform Kalman Filter (ETKF) single- and two-stage solutions form two different

square root solutions. The Weakly Constrained Ensemble Kalman Filter (WCEnKF) and

the Weakly Constrained Ensemble Transform Kalman Filter (WCETKF) were evaluated

for 3-hourly and daily update frequencies with soil moisture only, or soil moisture and soil

temperature assimilated together. Simulations were performed using the Noah Land Surface

Model (LSM) over Oklahoma, USA, using synthetic observations. State errors of constrained

and unconstrained solutions were found to be similar; neither type had significantly smaller

errors for most experiments. Constrained filters had smaller water balance residuals than

unconstrained standard filters for all tested scenarios. The water balance residual of the

ETKF and EnKF were similar for both 3-hourly and daily update experiments. The major-

ity of the total column water change for daily updated filters resulted from the assimilation

update.

1



1. Introduction

Data assimilation is a technique for optimally combining observations and model forecasts

into a single best estimate of the state, while taking into account the accuracy of the two

independent estimates. Data assimilation systems are optimum only in so far as certain

underlying assumptions are fulfilled, namely that the forecast model is perfect, observations

and forecasts are unbiased, observation errors are independent of the state, and all the

distributions are Gaussian. However, available modeling and observing systems do not satisfy

all these assumptions. In practice, the model is not perfect, observations and forecasts are

biased, and the error covariances that are needed to solve the optimal solution are unknown.

In land surface applications, data assimilation methods have used satellite-, air-, and

ground-based observations to improve estimates of soil moisture, soil skin temperature, dis-

charge, snow water equivalent, snow cover, and water storage estimates (Houser et al. 1998;

Lakshmi 2000; Pauwels et al. 2002; Reichle et al. 2008; Zaitchik et al. 2008; Crow and Ryu

2009; Kumar et al. 2009; De Lannoy et al. 2010). However, special problems occur when

conserved quantities are assimilated. For instance, assimilation of hydrological observations

(e.g. soil moisture) may improve estimates of hydrological variables, but generally degrade

the water balance because the analysis increments do not conserve water since they are

compensating for system biases or errors. Even if the dynamical model conserves water, the

state update generally creates a water budget imbalance. If the degree of water imbalance is

excessive, then it is reasonable to question whether an alternative data assimilation system

should be employed, particularly one that reduces or removes the imbalance of water.

Skillful water estimation is important for hydrologists since it determines the location
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of the stored water on land, eg. for streamflow, agricultural, and water management appli-

cations (Alsdorf et al. 2007). Accurate water budgets are important for estimating runoff,

because runoff is calculated as a residual of other water balance terms. Skillful estimations

of the water and energy cycles are also important for developing and validating hydrolog-

ical models (Wei et al. 2010); in particular in model skill assessment, facilitating model

parameterization developments, calibrating model parameterizations, better understanding

the hydrological processes, assessing the role of land over climate predictability (DelSole

et al. 2009; Dirmeyer 2003), and predicting future changes. In fact obtaining a “closed”

water and energy balance estimate on a continental scale has been focus of many scientific

experiments, particularly World Climate Research Program (WCRP) Global Energy and

Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP; Roads

et al. 2003). It has been emphasized that the land-atmosphere interaction and the land

water storage still remains as the future issues to be addressed (WCRP JSC Report 2010),

which are primarily linked with water and energy cycles.

However, obtaining a balanced or closed water budget is not trivial: observations are not

temporally and spatially adequate to obtain useful closure information, or to estimate their

sampling uncertainties. Models have the potential to completely cover the region of interest

temporally and spatially, but, they may suffer from inaccurate parameterizations. Hence,

correct closure information may not be obtained from models alone. Data assimilation com-

bines both observations and models by taking into account their error structures; however,

as described above, their corrections may lead to water budget imbalance due to the state

updates that correct system bias or error.

Pan and Wood (2006) proposed a constraint in land-data assimilation to ensure that
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the data assimilation system conserved water. They have derived a two-stage constrained

Kalman Filter solution in which the first stage is a traditional Kalman Filter and the second

stage imposes a water balance constraint in an optimal manner. They have also included

precipitation, evaporation, and runoff in their state vector and thereby used the filter to

update these quantities. Pan and Wood (2006) showed that the constrained Kalman Filter

gave estimates not far from the unconstrained filter, except that the water imbalance was

removed.

In this study, it is shown that the constrained Kalman Filter can lead to very unrealistic

state estimates. Specifically, if individual terms in the water budget have large errors, then

imposing the budget to balance exactly requires these errors to be distributed among the

state variables. If these errors are sufficiently large, then the budget constraint will cause

some state variables to deviate beyond their natural range. There are at least two ways for

dealing with large errors in the budget terms: include forcing terms in the data assimilation

procedure, as showed by Pan and Wood (2006), or to impose a weak constraint in which the

water budget derived from observed components is assumed to hold only approximately.

The purpose of this study is to present a weakly constrained data assimilation system

in which a water budget constraint is imposed on the conventional data assimilation sys-

tems while taking into account the uncertainties of the water balance elements. Weakly

constrained solutions were introduced for both the Ensemble Kalman Filter (EnKF) and En-

semble Transform Kalman Filter (ETKF). The weakly constrained Kalman Filter is applied

to idealized experiments and its performance was compared to the unconstrained Kalman

Filter. It is shown that the weakly constrained solution improves the water budget imbalance

without increasing the errors of the hydrological variables.
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This paper is organized as follows: section 2 briefly reviews the standard EnKF and

ETKF; section 3 introduces the water budget constraint and its implementation in both

filters; section 4 outlines the details of the synthetic experiments performed with and with-

out the constraint; section 5 presents results from the experiments; section 6 summarizes

the outcomes of the results; and appendix section presents the detailed derivation of the

constrained filter.

2. Unconstrained Standard Filters

a. Kalman Filter

Complete derivations of Kalman Filter (KF), EnKF, and ETKF solutions can be found in

numerous papers; here, these derivations are reviewed once more to emphasize the differences

between the unconstrained and the constrained solutions.

The objective of data assimilation is to “optimally”estimate a set of quantities using all

available observations, prior knowledge of the underlying model structure, and associated

error statistics. In Kalman Filtering, the goal is to solve for the best state estimate and its

uncertainty, where this best estimate and its error covariance information is propagated in

time. This optimal estimate can be estimated by minimizing a cost function (Lorenc 1986),

J = (o−Hx)TR−1(o−Hx) + (x− xf )TP−1f (x− xf ), (1)

where lower case letters represent vectors, capital letters represent matrices; o is the obser-

vations; x is the best estimate of the state to be found; H is a linear observation operator

that maps the model state to observation space; superscript T is the transpose operator;
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R is the observation error covariance matrix; xf is the prior estimate of the model state,

usually obtained from a model forecast; and Pf is the model background error covariance

matrix. The first term on the right side of (1) measures the distance between the state

and the observations, and the second term measures the distance between the state and

the background. Both distances are measured using a norm based on the appropriate error

covariance matrix. The vector x that minimizes (1) gives the best estimate according to

maximum likelihood or Bayesian derivation methods (Maybeck 1982). The minimization of

(1) can be obtained by setting the derivative of J w.r.t. x equal to 0 and solving

∂J

∂x
= 2(HTR−1H + Pf

−1)x− 2(HTR−1o + Pf
−1xf ) = 0.

The solution can be shown to be

xa = xf + K(o−Hxf ) (2)

K = PfH
T (HPfH

T + R)−1 (3)

where xa is the updated state vector and K is the Kalman gain matrix. The analysis error

covariance is given by

Pa = Pf −KHPf . (4)

b. Ensemble Kalman Filter

In typical geophysical data assimilation, the KF is prohibitively expensive. Moreover, the

background error covariance Pf is often unavailable due to its large dimension and/or the

underlying model is nonlinear. To circumvent these problems, Evensen (1994) introduced

the EnKF, whereby ensembles of realizations are created by Monte Carlo methods and carry
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the error covariance information. Evensen (1994) proposed updating the individual ensemble

members using the equation

xai = xfi + K(o−Hxfi)

where an i-index is included to identify the ensemble member. It proves convenient to collect

the ensemble members into a single matrix as

Xf =
1√

(N − 1)
[xf1 − µf ,xf2 − µf , . . .,xfN − µf ].

where µf denotes the ensemble mean state vector, N is the ensemble size, and similarly for

the update Xa. In this notation, the analysis anomaly and the best estimate of the state

update equations become

Xa = Xf + K(O−HXf ) (5)

µa = µf + K(o−Hµf ) (6)

where Pf = XfX
T
f is substituted in (3) and (4); and O is a matrix of perturbed observations

in which each column is of the form o + εi, where εi is drawn from a normal distribution

with 0 mean and covariance R (Burgers et al. 1998).

c. Ensemble Transform Kalman Filter

Bishop et al. (2001), Anderson (2001), and Whitaker and Hamill (2002) proposed alter-

native ensemble filtering method that avoided perturbed observations. These filters were

shown to belong to a single family of filters called square root filters (Tippett et al. 2003).

Just as a square root is not unique due to an ambiguity in sign, square root filters are
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not unique due an ambiguity in a unitary transformation. Bishop et al. (2001) showed the

analysis error covariance matrix (4) can be written as

Pa = XfDXT
f (7)

where

D = (I + XT
f HTR−1HXf )−1 (8)

and (7) is also consistent with Pa = XaX
T
a .

The square root of D can be derived from the eigenvectors of XT
f HTR−1HXf . Specifi-

cally, if the eigenvector decomposition of this matrix is expressed as

XT
f HTR−1HXf = UΛUT

where U is unitary and Λ is a real positive diagonal matrix, then the most general square

root of D is

A = U(I + Λ)−1/2VT (9)

where V is any unitary matrix and AAT = D. This expression allows us to write the

updated analysis anomaly matrix as

Xa = XfA. (10)

Finally, the Kalman Gain can be written as

K = XfDXT
f HTR−1.

It should be recognized that the square root matrix A depends on the choice of VT . In

contrast, the matrices Pa, D, and K are independent of VT and hence unique. Choosing
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VT = UT makes the square root matrix A symmetric. Ott et al. (2004) show that the

quadratic form (Xa − Xf )TPa
−1(Xa − Xf ), which is a measure for the magnitude of the

analysis update, is also minimized if A is selected as the symmetric square root of D (which

is unique). Accordingly, in the present study VT is chosen to be UT .

Although both EnKF and ETKF have the same solution for Pa, D, K, and µa when

starting with the same ensemble, they produce different ensemble anomalies − the EnKF

produces the anomalies Xa as defined in (5), while the ETKF produces anomalies given in

(10). The EnKF requires inverting the matrix (HPfH
T + R), which is expensive for me-

teorological data assimilation applications, but relatively cheaper for land data assimilation

applications when the simulations at different pixels are assumed uncoupled. In contrast, the

ETKF requires calculating the eigenvector decomposition (XT
f HTR−1HXf ) and inverting

the matrix R, both of which are feasible for moderate ensemble sizes and diagonal R.

3. Constrained Filter

a. Water Budget Constraint

In land data assimilation, assimilation of soil moisture (SM) results in an analysis update

that does not conserve water. In this section, a water budget constraint is introduced to

reduce the water imbalance. The water balance residual at time step t is

rt = cTsm(SMat−1 − SMat) + ccmc(CMCat−1 − CMCat)+

cswe(SWEat−1 − SWEat) + cpPrt − ceEvt − crRnt (11)
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where SM is a 4-dimensional vector specifying the soil moisture in each of the 4 layers (as-

suming there are 4 soil layers); the scalar CMC specifies canopy moisture content; the scalar

SWE specifies the snow water equivalent; the scalars Pr, Ev, and Rn specify the integrated

precipitation, evapotranspiration, and runoff respectively, during the data assimilation win-

dow; prefactors ccmc, cswe, cp, ce, and cr are constants for unit conversion; and subscript a

denotes the analysis. Note that SM , CMC, and SWE are prognostic variables; Pr is a

forcing variable; Ev, and Rn are diagnostic variables. It is of interest to write the residual

equation as combination of state and non-state variables. For a given time step all terms

in (11), except for the analysis states, are known. Hence, these water balance terms can be

condensed into the form

rt = βt − cT
xxt (12)

where

βt = crPrt − ceEvt − crRnt + cTsmSMat−1 + ccmcCMCt−1 + csweSWEt−1 (13)

xt = [SM1at, SM2at, SM3at, SM4at, ST1at, ST2at, ST3at, ST4at,

SkTat, CMCat, SWEat]
T (14)

where rt is residual, βt is a known constant that holds the residual terms involving non-

prognostic variables; where SM1at, SM2at, SM3at, and SM4at are the soil moistures in the

four layers, ST1at, ST2at, ST3at, and ST4at are the soil temperatures in four soil layers,

and SkTat is the skin temperature; and cT
x is the unit conversion vector, where temperature

terms that are not part of water balance are weighted as zero (eg. assuming the units of

SM , CMC, and SWE are same, then cT
x = [1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1]) in order (12) to be

consistent with (11).
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Applying a strong constraint (i.e. forcing rt = 0) would preserve the total amount of water

in the water storage terms (soil moisture at different soil layers, canopy moisture content,

and snow water content). In a system where precipitation, runoff, and evapotranspiration

are not updated, the strongly constrained solution would redistribute the water between the

storages and would preserve the total amount of water in the storage terms. However, the

problem with enforcing a strong constraint is that the individual terms (including the non-

storage terms) in the water budget have error, and the errors themselves are not conserved.

Thus, it is inappropriate to force an imperfectly observed budget to be held exactly. One

approach is to correct the forcing terms, as described by Pan and Wood (2006). Here a weak

constraint is imposed, which accounts for uncertainty in the water budget itself.

One way to impose a residual constraint is to add another term to the cost function (1)

of the form λ ∗ f(r), where λ is a Lagrange multiplier and f(r) is a positive definite function

of r. For a strongly constrained solution (as in Simon and Chia 2002) the weighting factor

λ can be determined by setting the derivation of the chosen cost function w.r.t. to λ to 0

and solving. However, for a weakly constrained system, it is not clear how this λ should

be selected. Here the penalizing function f(r) is set to be (β − cT
xx)2, and the Lagrange

multiplier λ is chosen as ϕ−1, where ϕ is the error variance of β [how ϕ is calculated is given

below in (16)]. Note that the Lagrange multiplier is objectively estimated (is not assumed a

predetermined value or is not estimated through tuning a parameter). Hence the imposed

constraint is of the form (β − cT
xx)Tϕ−1(β − cT

xx), and the cost function to be minimized is

of the form

Jc = (o−Hx)TR−1(o−Hx) + (x− xf )TPf
−1(x− xf ) + (β − cT

xx)Tϕ−1(β − cT
xx) (15)
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where the constraint is conceived as a third penalization function which measures the degree

of water imbalance (r = 0).

In the standard cost function (1), uncertainty of the observations and the forecast are

represented with error covariance matrices of R and Pf respectively, that can be obtained

from the ensemble of their anomalies for an ensemble filtering framework. Similarly the error

variance (ϕ) of β in (15) can be obtained from the ensemble of realizations in the form

ϕ = β
′
β

′T
/(N − 1) (16)

where β
′

is a vector with dimension (1,N) that holds the ensemble anomaly of β (13), and

it is trivially calculated from the ensemble of variables that are known.

b. Constrained Kalman Filter

The vector x that minimizes (15) can be found by setting the derivative of Jc with

respect to x equal to 0 and solving. It is shown in the appendix (A9) that the constrained

KF solution is

xaa = xf + PaaH
TR−1(o−Hxf ) + Paacxϕ

−1(β − cx
Txf ) (17)

where Paa is the analysis error covariance of the constrained filter which is given in Ap-

pendix (A13). Similar to EnKF solution, the Weakly Constrained Ensemble Kalman Filter

(WCEnKF) solution is obtained by updating the ith ensemble member using (17) where per-

turbed observations (o
′
) are used instead of the observations (o) to update the ith ensemble
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member. The best estimate and the anomaly of the state for WCEnKF is found as

µaa = µf + PaaH
TR−1(o−Hµf ) + Paacxϕ

−1(β − cx
Tµf ) (18)

Xaa = Xf + PaaH
TR−1(O

′ −HXf ) + Paacxϕ
−1(B

′ − cx
TXf ). (19)

Also, it is shown in the appendix (A17) that the anomaly of the state for the Weakly

Constrained Ensemble Transform Kalman Filter (WCETKF) is of the form Xaa = XfAaa

where Aaa is the symmetric square root of

D = (I + XT
f (HTR−1H + cxϕ

−1cT
x )Xf )−1.

The square root can be obtained from the eigenvector decomposition of XT
f (HTR−1H +

cxϕ
−1cT

x )Xf .

The above constrained KF solution can also be shown to approach the unconstrained

standard KF solution as ϕ → ∞ [see appendix, (A21)]. Moreover, the residual of the

constrained filter is shown to be smaller than the residual of the standard filter [see appendix,

(A23)]. It is also shown in the appendix (A21) that the constrained KF solution can be solved

equivalently in two recursive filters:

xaa = xa + Pacx(ϕ+ cT
xPacx)−1(β − cT

xxa)

where xa = xf + PaH
TR−1(o −Hxf ) = xf + K(o −Hxf ) is the solution of the standard

KF without the constraint. This solution implies that the constrained solution can be

obtained by first calculating the solution (xa) for the standard KF, and then adjusting this

solution to take into account the constraint by adding [Pacx(ϕ+cT
xPacx)−1(β−cT

xxa)]. The

single-stage and the two-stage solutions yield identical WCEnKF updates, but generally

different WCETKF analysis anomaly updates due to the fact that the single- and two-stage
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WCETKF equations are solved using two different matrix square roots for the same analysis

error covariances.

A strongly constrained KF solution (A22) can be estimated by taking the limit ϕ→ 0.

xaa = xa + Pacx(cT
xPacx)−1(β − cT

xxa)

where this solution is identical to the strongly constrained solution of (Simon and Chia 2002,

eq. 25). Similar to the WCEnKF solution, a strongly constrained Ensemble Kalman Filter

(SCEnKF) can be estimated by updating the each ensemble using the above equation with

perturbed observations. Similarly, the analysis anomaly of a strongly constrained Ensemble

Transform Kalman Filter (SCETKF) can be obtained by taking the limit ϕ→ 0 in (A26) as

Xaa = Xa −Pacxc
T
xXa/c

T
xPacx

which implies the adjustment term for the constraint in the second state is Pacxc
T
xXa/c

T
xPacx.

In the two-stage constrained filter, the H-operator does not even appear in the second

stage, so the nonlinearity in H can be handled entirely in the first stage, which is identical

to the traditional KF. In other words, nonlinearity in the observation error can be handled

the same way it is handled in modern filters.

4. Synthetic Simulations

a. Experiment Setup

To illustrate the weakly constrained filters, synthetic experiments were performed using

the Noah land surface model (Ek et al. 2003) version 2.7. The study area was chosen to

14



be Red Arkansas River Basin, US (between 32.0◦N - 37.0◦N and 96.0◦W - 91.0◦W) with

0.125◦spatial resolution. There are total of 1521 pixels (39*39). The pixels are assumed to

have uncorrelated errors. Simulations were performed between April - October 2006 (total

4500 hourly time steps) using hourly North America Land Data Assimilation (NLDAS; Cos-

grove et al. 2003) forcing data (precipitation, pressure, relative humidity, wind speed, short

wave and long wave radiation, and air temperature) which have 0.125◦spatial resolutions.

Model grid spatial resolutions were selected consistent with the NLDAS data native resolu-

tion, so that no averaging or downscaling was needed. The initial states were generated by

running the land model for 10 years, but with repeating 2006 NLDAS forcing data in each

of the 10 years where the state obtained after each year of simulation is used as an initial

condition for the following year. The state obtained at the end of the 10th year were selected

as the initial states for all simulations. Assimilation of observations are performed in warm

climate, where the ensemble of model realizations are simulated starting from January to

provide a smooth transition before the assimilation of observations. All initial states and

the forcing data (air temperature, short and long wave radiations, and precipitation) were

perturbed (as described below) to create the ensembles for all simulations. The “truth” run

is identified as a single run of the model with unperturbed initial condition and forcing.

The experiments were based on a “perfect model”assumption in which the same model

that generated the “truth”was used to generate the prior distribution. The observation

operator H equals to the identity matrix. Initial states were perturbed using additive Gaus-

sian noise [selected from normal distribution with (µ=0,σ=1K◦) and (µ=0,σ=0.02%) for ST

and SM respectively]. Forcing perturbation standard deviations were selected similar to the

ones described in Reichle et al. (2008). Precipitation forcing was perturbed using multi-
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plicative noise with a log-normal distribution (µ=1,σ=0.7); short-wave radiative forcing was

perturbed using multiplicative noise with normal distribution [N(µ=1, σ=0.25)]; air temper-

ature forcing and long-wave forcing data were perturbed using additive noises with normal

distribution [N(µ=0, σ=2.5 K◦) and N(µ=0, σ=10 W.m−2) respectively]. The above pertur-

bations are independent. The precipitation perturbation multiplication factor was limited

between 0 and 4 where the actual precipitation value was further prevented to exceed the

true precipitation value with ±5mm/hour in ensemble generation. The short-wave pertur-

bation multiplication factor was limited between 0.2 and 1.8. Temperature and long-wave

radiation perturbations were limited to ±4 times their respective standard deviations.

All forecasts were performed for an ensemble size of 50. Ensembles of Open loop simu-

lations (through an ensemble of model simulations without the assimilation of observations,

where the ensemble mean is the best estimate) were simulated using the same perturbed ini-

tial states and forcings as the assimilation experiments. Although it is not possible to directly

measure the full SM and ST profiles with the current observation systems, there are many

monitoring stations that provide in-situ deep soil layer variables (i.e. Oklahoma Mesonet

Network). Hence, for the proof of concept, observations through the entire soil column were

assimilated (not only the top layer). After open loop simulations were performed and their

errors were calculated, observation perturbation variances were selected based on these open

loop error variances in order to have comparable open loop and observation realizations.

Accordingly, observations were created by adding zero mean Gaussian noise to the truth

states for all four soil layers (ST and SM perturbation standard deviations were 0.40K◦and

0.004% respectively for all four soil layers). Unconstrained and constrained simulations had

the same forcing and initial state perturbations as the open loop.
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b. Filter Performance Checks and Analysis of the Results

The simulations were performed for four filters (ETKF, EnKF, WCETKF, and WCEnKF),

for two types of assimilated observations (all 4 layers of SM , or all 4 layers of SM and ST

together), and for two state update frequencies (3-hourly or once a day) giving a total of

16 sets of experiments. Only the single-stage solutions were used for the constrained filters.

State error and the water balance residual statistics were calculated for all 16 sets of exper-

iments. The state error statistics were also calculated for the open loop simulations (open

loop simulations have no water balance residual).

1) Innovation Statistics

If the assumptions on which the KF equations were derived are true, then the quadratic

form [(o−Hx)T (HPfH
T + R)−1(o−Hx)] should have chi-squared distribution with d.o.f.

equal to the size of the observation vector. This chi-squared statistic was calculated at each

time step for each pixel and each experiment separately. The percentage of pixels that were

within the 2.5 and 97.5 percentiles was calculated for each experiment separately. The 2.5

and 97.5 percentiles of a chi-square distribution are 0.484 and 11.14 for 4 d.of. (for SM

only updated scenario); and 2.180 and 17.535 for 8 d.o.f. (for both SM and ST updated

scenario).
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2) State Errors

Updated states during the assimilation are SM (all 4 layers), ST (all 4 layers), SkT ,

CMC, and SWE, regardless of the observed variable that is assimilated (SM , or SM and

ST ). Due to the time interval selection (April-October, no snow), snow related variables

were effectively not updated; hence snow related results were not investigated or presented

in this study. Mean square error of ensemble means (MSE) for each of 10 states and for

each of 16 experiments per pixel were calculated as

MSEs i lon lat =
∑
t

(µs i lon lat t − tss i lon lat t)
2/(tts− 1)

where µ is the ensemble mean state, ts is the true state, s is each state (total 11), i is each

experiment (defined above, total 16 sets), lon is longitude pixel number (total 39), lat is

latitude pixel number (total 39), t is each time step, and tts denotes the number of total

time steps (total 4501) respectively. Resulting MSE values for each pixel and for all 4 soil

layers were then averaged to a single number separately for ST and SM variables and for

each experiment.

RMSE.SMi =

√√√√ 4∑
sm

39∑
lat

39∑
lon

MSEsm i lon lat/(4 ∗ 39 ∗ 39))

RMSE.STi =

√√√√ 4∑
st

39∑
lat

39∑
lon

MSEst i lon lat/(4 ∗ 39 ∗ 39))

3) Water Balance Residual

The water balance residual was calculated for each ensemble member, at each time step,

at each pixel in the study area, and each set of experiments (total 16, defined above). The
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variance and the mean of the residuals were calculated using all time step and ensemble

member values for each set of experiment and for each pixel in the study area as:

ri lon lat . t =
∑
n

ri lon lat n t/N

ri lon lat . . =
∑
t

ri lon lat . t/ats

σ2ri lon lat =
∑
t

(ri lon lat . t − ri lon lat . .)/(ats− 1)

where the “dot”denotes an index that is averaged out, σ2r is the residual variance, n denotes

ensemble member, and ats is the total number of time steps that the observations are assim-

ilated (1500 and 187 for 3-hourly and daily update scenarios respectively), where only the

residuals due to assimilation were included in the statistics. Then σ2ri lon lat and ri lon lat . .

values were averaged over the study area into single number (σ2ri . . and ri . . . .) for each

experiment separately.

4) Total Column Water Change

Total column water content is defined as the summation of the total soil moisture content

(mm) for all 4 soil layers at any given time where its change (due to integration of the model

and assimilation of observations) is defined as,

∆WCi lon lat t =
∑
N

∑
d

(SMi lon lat n t−1 d − SMi lon lat n t d) ∗Depthd/N

∆WCi lon lat . =
∑
t

∆WCi lon lat t/ats

σ2Wati lon lat =
∑
t

(∆WCi lon lat t −∆WCi lon lat .)
2/(ats− 1)

19



where ∆WC is the total column water content change (mm), d is the soil layer identifier, and

∆WCi lon lat . and σ2Wati lon lat are the mean and the variance of the total column water

change. Calculated σ2Wati lon lat values are then averaged over the study area into a single

variance for each experiment (σ2Wati . . ). For daily update scenarios σ2Wati . . variances,

similar to residual variances, were calculated only for the time-steps of the assimilation

updates.

5. Results

a. RMS Error of the States

The result of applying a strongly constrained EnKF for a single pixel located at 34.63◦N

and 94.75◦W between May-Oct, 2006 with 3-hourly SM observations is shown in Fig. 1. This

figure shows that the strongly constrained filter produces very unrealistic soil temperatures,

in the sense that the estimates are well beyond the range of variability of the truth. It is

plausible that the unrealistically large increments are caused by large errors in the forcing

and observations– instead of “shrinking” the errors, the strongly constrained filter “spreads”

the errors in the column in order to conserve the apparent total water balance. We say

”apparent” because the water budget terms have errors, so the true water budget is not

known. In effect, a strong constraint on the water budget assumes not only that water is

conserved, but also that the errors in the budge terms are conserved– a dubious assumption.

The strong constraint seems most appropriate when the errors in the forcing and observations

are small. Hence the remaining constraint experiments were performed using single stage
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weakly constrained filters (WCEnKF or WCETKF).

The RMSE of all assimilation experiments, observations, and the open loop runs are

shown in Fig 2. In most cases, the RMSEs for the constrained filter were close (within

2%) to the RMSEs for the unconstrained filter. The RMSEs for the constrained filter can

be larger than for the unconstrained filter, but in these cases the RMSEs still were much

smaller than the RMSEs in observations or the open loop. Not surprisingly, the RMSEs

of a variable were much smaller than those of the corresponding observations or the open

loop, when observations of that variable were assimilated. However, if the observations of

a variable were not assimilated, then the RMSE of that variable can be comparable to that

of the open loop, indicating very little benefit from the filter. Three-hourly assimilation of

observations has smaller RMSEs than the corresponding daily assimilation, but not by an

order of magnitude (even though 3-hourly assimilation was 8 times more expensive than the

daily assimilation). In general, the RMSEs for the EnKF, ETKF, WCEnKF, and WCETKF

were comparable to each other.

Innovation statistics were analyzed for the filter performance. Observed innovations fell

within the 95% confidence interval 92% to 95% of the time, and innovations for all state

variables were temporally uncorrelated; both suggesting consistency with the underlying

assumptions of the KF.

b. Water Balance Residual

Water balance residual variances for the 16 experiments using the single-stage filters are

shown in Fig. 3a. In general, the time mean of the residuals differed only slightly between the
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16 sets of experiments (results not shown), where the annual water budget is not conserved

on average. The magnitude of the residual bias was orders magnitude smaller (∼2-3% for

daily simulations) than the magnitude of the residual variance for all experiments.

Constrained filter residual variances were smaller than unconstrained filter residual vari-

ances over all pixels in the study area regardless of the update variable (SM alone, or SM

and ST together), filter (WCETKF vs ETKF, or WCEnKF vs EnKF), or update frequency

(3-hourly or daily) selection (Fig. 3a). The residual variances of the constrained filters were

14% to 44% less than those for the unconstrained filters.

Two-stage WCETKF was performed using the unconstrained ETKF square root for the

first stage. Two-stage WCETKF has consistent tendency to have higher (but not significant)

state errors than the single-stage WCETKF errors, whereas two-stage WCETKF residuals

were almost identical with the single-stage WCETKF residuals (results not shown).

c. Total Column Water Content Change

Cross comparisons of the variances of the total column water content change were per-

formed for the 16 sets of assimilation experiments, the truth, and the open loop simulations

(Fig. 3b).

The water content change variance of the open loop simulations was slightly lower than

that of truth simulations. The constrained assimilation experiments had 14%-33% smaller

total column water change than the unconstrained experiments regardless of the assimilation

frequency, observed variable, or the filter selection (Fig. 3b), supporting the above discussed

residual results that the constrained filters were closer to the truth simulations with respect
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to their closure of water cycling than unconstrained filters.

Total column water change in an assimilation experiment can be conceived as the summa-

tion of the true change plus the residual added due to the assimilation update. Comparison

of the residual variances against total water change for the assimilation experiments indicates

70% of the total water change was due to the residual for daily assimilations where this ratio

was around 30% for 3-hourly assimilation experiments (Fig. 3a and Fig. 3b); suggesting

that in the absence of frequent observations the obtained total soil moisture content change

is heavily affected from the residuals along with the true soil moisture change.

d. Sensitivity of ϕ

Estimation of ϕ in an objective way from the ensemble of realizations with the above

described methodology (16) improves the residuals with little effect on the state errors. The

effect of inflating (or deflating) the ϕ values and using constant ϕ values rather than being

objectively estimated (16) scenarios were investigated (Fig. 4). These simulations were

performed for 195 pixels located between 37.0◦N – 36.375◦N and 96.0◦W – 91.0◦W with

3-hourly SM and ST observations. An apparent trade-off was found between the state errors

and the residuals: the more the ϕ values were deflated (constraint was applied stronger),

the more the state errors were increased and the more the residuals were decreased (Fig. 4).

Applying the constraint too strongly (with inflation factor of 0.01 or using constant 0.01 ϕ

values) resulted in state errors equal to observation errors, suggesting no additional benefit

from the filter. Applying the constraint even more strongly (with inflation factor of 0.00001

or using constant 0.00001 ϕ values) resulted in much higher errors than both the observations
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and the open loop, which supports the strong constraint results presented above. On the

other hand, applying the constraint too weakly (by inflating ϕ 20 times or using constant

ϕ values of 20) resulted in residuals that are very close to residuals of the unconstrained

simulations.

In this sensitivity study, the range of constant (tuned) ϕ values were chosen based on a

priori information obtained from objective estimation (16). SM error–residual trade off per-

formance of WCEnKF was better than the performance of WCETKF. Objective estimation

of ϕ had same performance with the estimation through tuned ϕ for WCEnKF; whereas

for WCETKF using tunable parameter gave better performance than objective estimation.

Hence, in this study we conclude there is no universal solution in selection of tuning or

inflating ϕ; for some filters tuning gives better, for some inflation avoids tuning ϕ.

Optimality of the constrained filter depends on the goal of the specific application; de-

pending on the priority given to the state error or the residual error, ϕ can be inflated or

deflated to improve one error while degrading the other one at a different magnitude (Fig.

4). In general, in hydrological studies, having smaller state error is generally preferred. From

this point of view, smaller residuals can be obtained without degrading the state errors no-

ticeably. For example, inflating ϕ values with factors of 0.50–0.75 gave almost the same

state errors with the standard EnKF, while it reduces the residuals to less than half of the

standard EnKF. Objectiveness of how a constant ϕ value can be selected is still questionable;

however similar results can be obtained by tuning the ϕ values prior to the simulations. The

objective selection of a tuned ϕ value or an inflation factor could be less of a problem for

reanalysis type of studies; whereas for an operational platform, particularly in a changing

system, the selection of tuned ϕ could be more critical.
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6. Conclusions

In land data assimilation systems, the state updates produce a water budget imbalance,

called a residual. In this study, a weakly constrained data assimilation solution was intro-

duced to reduce the residual of standard EnKF (Evensen 1994) and ETKF (Bishop et al.

2001). The solutions of these filters for the optimum state estimation can be found by

minimizing a cost function which penalizes both the model forecast and the observation

errors weighted by their error uncertainty. Similarly, constrained filter solutions (WCEnKF

and WCETKF) were derived by minimizing a cost function that is the summation of three

terms that represent the forecast errors, observation errors, and the water budget imbalance.

These solutions were shown to be obtained in a single stage or in two stages where the first

stage is the standard solution and the second stage is the constrained filter update. Two

stage solution was shown to be identical to the single stage solution for WCEnKF where the

analysis anomaly solutions of WCETKF differ for single and two stage solutions.

The minimization of the constraint cost function requires uncertainty estimates for the

water balance elements (ϕ). This ϕ term was estimated objectively from the ensembles.

Optimality of ϕ was analyzed by inflating, deflating, and using constant values of ϕ and

comparing the results of these analysis with the flow dependent method. Major outcomes of

this study can be summarized as follows:

• In general, the constrained solution affected the state RMSE only slightly when com-

pared to unconstrained solution: constrained filter errors were indistinguishable from

the unconstrained filter errors for the majority of the experiments.

• There is little-to-no improvement in ST errors when only SM observations are assimi-
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lated. There is also no improvement in SM errors and residuals when ST observations

are also assimilated along with SM observations.

• Water balance residual variances of weakly constrained filters (WCEnKF and WCETKF)

are smaller than that of unconstrained filters (ETKF or EnKF) regardless of the up-

date frequency (daily or 3-hourly) or the assimilated variable (SM only, or SM and ST

together) selection.

• There is no major difference found between single-stage WCETKF (with a symmetric

square-root) and two-stage WCETKF (with symmetric square-root only in the first

stage) when state errors and residuals are compared.

• Estimation of ϕ in an objective way (16) did not give smaller SM errors and residuals

when ϕ values were selected as a constant.

As with the water balance, land surface models also conserve the energy balance, but an

imbalance occurs during assimilation as a result of the temperature state update. Although

an energy balance constraint was not performed, the solution implemented in this study for

water balance residuals also can be used to reduce the energy balance residuals.

In general, data assimilation of hydrological states results in an inconsistency between the

predicted diagnostic variables (i.e. evapotranspiration, runoff) and the updated prognostic

variables. Diagnostic variables remain unaffected from the prognostic variable update in cur-

rent hydrological data assimilation schemes; unaffected diagnostic variables and the updated

prognostic variables are model predictions for two different initial conditions. A remedy can

be obtained by also updating the diagnostic variables (eg. evapotranspiration and runoff)

along with the prognostic variables, where the error covariances for the diagnostic variables
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are estimated from the ensembles (Pan and Wood 2006). In this study, an idealized setup

was used, where the model errors and the model parameterization errors were not taken into

account. An alternative approach could have been a fraternal twin experiment, where the

truths are generated in one model and the experiments are performed in another. In this

study, flow dependent estimated ϕ did not give superior results over a constant value for ϕ.

An alternative flow dependent methodology can be obtained where ϕ can be treated as a

parameter to be optimized inside the KF and be solved simultaneously with the estimated

state.

In this study the residuals of the standard data assimilation techniques were reduced

with a constrained filter. The constrained solution introduced in this study could be very

valuable to GEWEX community to obtain a better water and energy cycling information

as this study lays a solution to reduce the uncertainty of the water and potentially energy

budgets. In general, reanalysis data are used to obtain better analysis of historical data

that were not available in the past; NCEP reanalysis (Kalnay et al. 1996) is one of the

early examples that produced 40 years of global atmospheric data. Data assimilation offers

the ideal platform for reanalysis type of studies as new methods emerge. The introduced

weakly constrained filter in this study could be used in reanalysis type of studies to acquire

improved water and energy cycles. Weakly constrained assimilation can make the reanalysis

products more valuable to the same community without making it less valuable to another

community.
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APPENDIX

Constrained Filter

a. Single-Stage Constrained Filter

1) Single-Stage Constrained Kalman Filter

Similar to the traditional KF, a constrained KF solution can be also obtained through

minimizing a cost function given in (15)

Jc = (o−Hx)TR−1(o−Hx) + (x− xf )TPf
−1(x− xf ) + (β − cT

xx)Tϕ−1(β − cT
xx) (A1)

∂J

∂x
= 2(HTR−1H + Pf

−1 + cxϕ
−1cT

x )x− 2(HTR−1o + Pf
−1xf + cxϕ

−1β) (A2)

Setting derivation (A2) to 0, the solution for the constrained filter can be expressed as

xaa = (HTR−1H + Pf
−1 + cxϕ

−1cT
x )−1(HTR−1o + Pf

−1xf + cxϕ
−1β) (A3)

This equation can be used as a final solution to the constrained KF. However, the analogy

with the standard KF is not obvious. Below, a constrained KF filter solution analogous to

the standard solution was derived.

To ease the notation, we define S−1 = HTR−1H + cxϕ
−1cT

x , then (A3) becomes:

xaa = (Pf
−1 + S−1)−1(HTR−1o + Pf

−1xf + cxϕ
−1β) (A4)

The notation was eased further by using the second derivation of the cost function, which is

equal to the inverse of the analysis error covariance matrix (Lorenc 1986) of the constrained
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filter,

∂2J

∂x2
= P−1aa = Pf

−1 + S−1

Paa = (Pf
−1 + S−1)−1. (A5)

Hence, above equation (A4) can be rewritten as

xaa = Paa(H
TR−1o + Pf

−1xf + cxϕ
−1β)

xaa = PaaH
TR−1o + PaaPf

−1xf + Paacxϕ
−1β. (A6)

Before continuing the derivation from (A6), another equality is introduced

Paa = (Pf
−1 + S−1)−1

Paa(Pf
−1 + S−1) = I

PaaPf
−1 = I−PaaS

−1. (A7)

Using this equality in (A7), (A6) can be rewritten as

xaa = PaaH
TR−1o + (I−PaaS

−1)xf + Paacxϕ
−1β (A8)

= xf + PaaH
TR−1o−Paa(H

TR−1H + cxϕ
−1cT

x )xf + Paacxϕ
−1β

= xf + PaaH
TR−1(o−Hxf ) + Paa(cxϕ

−1β − cxϕ
−1cT

xxf )

and the final constrained KF solution is obtained as

xaa = xf + PaaH
TR−1(o−Hxf ) + Paacxϕ

−1(β − cT
xxf ) (A9)

where the analogy between the constrained KF and the standard KF solutions becomes more

clear when the standard KF solution [xa = xf + K(o−Hxf )] is equivalently written in the

form xa = xf + PaH
TR−1(o−Hxf ).
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The best estimate and the analysis anomaly of WCEnKF is found as

µaa = µf + PaaH
TR−1(o−Hµf ) + Paacxϕ

−1(β − cT
xµf ) (A10)

Xaa = Xf + PaaH
TR−1(O′ −HXf ) + Paacxϕ

−1(B′ − cT
xXf ). (A11)

where O′ and B′ are matrices holding the observation anomalies (namely random numbers

used for the perturbations) and the constraint anomalies respectively.

Solution of the standard KF requires a single inverse, computation of the Kalman gain.

Similarly, the solution of the constrained filter can be obtained with a single inverse, through

the computation of Paa,

Paa = (HTR−1H + Pf
−1 + cxϕ

−1cT
x )−1 (A12)

Paa = Pf

(
I + (HTR−1H + cxϕ

−1cT
x )Pf

)−1
(A13)

provided that the observation error covariance matrix (R) is assumed diagonal, hence its

inverse is trivial.

Whitaker and Hamill (2002) showed that without the perturbation of observations, the

analysis error covariance of EnKF is underestimated by a term of KRKT . The term β holds

the prognostic variables of the previous time-step analysis, fluxes, and the forcing data,

where β is obtained from ensembles (B′ 6= 0). Hence, construction of perturbed constraints

is not needed for the constrained filters.

2) Single-Stage Constrained Ensemble Transform Kalman Filter

The best estimate of the state for the WCETKF is found using (A10). Similar to the

traditional ETKF solutions, analysis anomaly solution of WCETKF can also be obtained by
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using analysis error covariance matrix of the constrained filter.

Paa = (Pf
−1 + S−1)−1

= PfPf
−1(Pf

−1 + S−1)−1

= Pf (Pf
−1Pf + S−1Pf )−1

= Pf (I + S−1Pf )−1

= XfX
T
f (I + S−1Xf ∗ I ∗XT

f )−1 (A14)

Using the Sherman-Morrison-Woodbury formula [a reminder for the reader (A+BCD)−1 =

A−1 −A−1B(C−1 + DA−1B)−1DA−1, (A14) can be rewritten as

Paa = XfX
T
f [I− I ∗ S−1Xf (I + XT

f ∗ I ∗ S−1Xf )−1XT
f ∗ I]

= Xf [I−XT
f S−1Xf (I + XT

f S−1Xf )−1]XT
f

= Xf [(I + XT
f S−1Xf −XT

f S−1Xf )(I + XT
f S−1Xf )−1]XT

f

Paa = Xf (I + XT
f S−1Xf )−1XT

f (A15)

Paa = XfDXT
f (A16)

where D = (I + XT
f S−1Xf )−1. Using eigenvalue decomposition of XT

f S−1Xf (U is eigenvec-

tors and Λ is diagonal) and defining its square root as D = AaaA
T
aa, this square root can be

found Aaa = U(I + Λ)−1/2VT , where VT is unitary. These equalities imply the solution for

the anomaly of the analysis for the constrained filter can be rewritten as

Xaa = XfAaa (A17)

where this solution is also consistent with (A16).
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b. Two-Stage Constrained Filter

In this section it is shown that the single-stage solution in (A9) can equivalently be

performed in two-recursive stages where the first stage is the standard KF equations and the

second stage is the constrained filter adjustment.

1) Two-Stage Constrained Kalman Filter

Expending the terms, (A9) becomes

xaa = xf + (Pf
−1 + HTR−1H + cxϕ

−1cT
x )−1HTR−1(o−Hxf ) + (Pf

−1 +

HTR−1H + cxϕ
−1cT

x )−1cxϕ
−1(β − cx

Txf ). (A18)

Substituting inverse of the standard KF analysis error covariance P−1a = Pf
−1 + HTR−1H,

(A18) becomes

xaa = xf + (Pa
−1 + cxϕ

−1cT
x )−1HTR−1(o−Hxf ) +

(Pa
−1 + cxϕ

−1cT
x )−1cxϕ

−1(β − cx
Txf ) (A19)
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Using the Sherman-Morrison-Woodbury formula,(Pa
−1 + cxϕ

−1cT
x )−1 = Pa − Pacx(ϕ +

cT
xPacx)−1cT

xPa, (A19) becomes

xaa = xf +
(
Pa −Pacx(ϕ+ cT

xPacx)−1cT
xPa

)
HTR−1(o−Hxf )+(

Pa −Pacx(ϕ+ cT
xPacx)−1cT

xPa

)
cxϕ

−1(β − cx
Txf )

xaa = xf +
[
PaH

TR−1(o−Hxf )−Pacx(ϕ+ cT
xPacx)−1cT

xPaH
TR−1(o−Hxf )

]
+[

Pacxϕ
−1(β − cT

xxf )−Pacx(ϕ+ cT
xPacx)−1cT

xPacxϕ
−1(β − cT

xxf )
]

xaa = xa + Pacx

[
ϕ−1(β − cT

xxf )− (ϕ+ cT
xPacx)−1

cT
xPaH

TR−1(o−Hxf )− (ϕ+ cT
xPacx)−1cT

xPacxϕ
−1(β − cT

xxf )
]

xaa = xa + Pacx(ϕ+ cT
xPacx)−1[

(ϕ+ cT
xPacx)ϕ−1(β − cT

xxf )− cT
xPaH

TR−1(o−Hxf )− cT
xPacxϕ

−1(β − cT
xxf )

]
xaa = xa + Pacx(ϕ+ cT

xPacx)−1[
(β − cT

xxf ) + cT
xPacxϕ

−1(β − cT
xxf )− cT

xPaH
TR−1(o−Hxf )− cT

xPacxϕ
−1(β − cT

xxf )
]

xaa = xa + Pacx(ϕ+ cT
xPacx)−1

[
(β − cT

xxf )− cT
xPaH

TR−1(o−Hxf )
]

xaa = xa + Pacx(ϕ+ cT
xPacx)−1

[
β − cT

x

(
xf −PaH

TR−1(o−Hxf )
)]

(A20)

The two-stage solution can be written as

xaa = xa + Pacx(ϕ+ cT
xPacx)−1(β − cT

xxa) (A21)

where xa = xf + PaH
TR−1(o −Hxf ) is the standard KF solution without the constraint.

Above equation (A21) can also be used for the best estimate and the analysis anomaly

solution of the two-stage WCEnKF. It is also noted that for (limϕ → ∞), the second term

in (A21) vanishes, and the constrained filter solution equals to the standard KF solution.
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Moreover, setting ϕ = 0 in (A21), strongly constrained KF solution is obtained as

xaa = xa + Ks(β − cT
xxa) (A22)

where Ks = Pacx(cT
xPacx)−1. This strongly constrained solution in (A22) is identical with

the maximum probability method constrained solution of (Simon and Chia 2002, eq. 25).

The two-stage solution (A21) implies that the constraint can be performed in two sequen-

tial stages: the first stage is the standard KF (xa) without the constraint and the second

stage is the constrained filter Pacx(ϕ+ cT
xPacx)−1(β − cT

xxa).

A comparison of the residual terms (β− cT
xx) of the constrained and standard filters can

be performed using the two-stage solution in (A21):

xaa = xa + Pacx(ϕ+ cT
xPacx)−1(β − cT

xxa)

β − cT
xxaa = β − cT

xxa − cT
xPacx(ϕ+ cT

xPacx)−1(β − cT
xxa)

β − cT
xxaa = [I− cT

xPacx(ϕ+ cT
xPacx)−1](β − cT

xxa)

β − cT
xxaa =

[
(ϕ+ cT

xPacx)− cT
xPacx

]
(ϕ+ cT

xPacx)−1(β − cT
xxa)

β − cT
xxaa = ϕ(ϕ+ cT

xPacx)−1(β − cT
xxa) (A23)

For scalar cT
xPacx > 0, ϕ(ϕ+ cT

xPacx)−1 < 1 therefore (β − cT
xxaa) < (β − cT

xxa); hence the

constraint shrinks the residual of KF toward zero by a rate that depends on ϕ.

2) Two-stage Constrained Ensemble Transform Kalman Filter

Similar to the two stage WCEnKF, the best estimate of the two-stage WCETKF can

be found using two-stage constrained KF solution (A21). Two stage solution of the state

anomalies for the WCETKF can be found using the inverse of the analysis error covariance
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of the constrained filter. Using inverse of (A12)

Paa
−1 = Pf

−1 + HTR−1H + cxϕ
−1cT

x

Paa
−1 = Pa

−1 + cxϕ
−1cT

x

Paa = (Pa
−1 + cxϕ

−1cT
x )−1.

Using the Sherman-Morrison-Woodbury formula,

Paa = Pa −Pacx(ϕ+ cT
xPacx)−1cT

xPa

XaaXaa
T = Xa(I−Xa

Tcx(ϕ+ cT
xPacx)−1cT

xXa)Xa
T

XaaXaa
T = Xa(I− zαzT )Xa

T

where Xaa is the analysis anomaly of the constrained filter, α = (ϕ+ cT
xPacx)−1 is a scalar,

and z = Xa
Tcx. A square root can be found analytically by finding a scalar (δ) such that

(I + δzzT )(I + δzzT )
T

= I− zαzT

and rearranging the terms on both sides as

(γδ2 + 2δ + α)zzT = 0

where γ = zTz is a scalar and the solution is found as

δ± =
−1±

√
1− αγ
γ

This quadratic form gives two solutions, but only one of them produces a positive definite

square root. To determine the correct choice, we choose the solution that renders

zT (I + δ±zz
T )z > 0
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where the above quadratic form checks for the positive definiteness of (I + δ±zzT ) for vector

z. Rearranging the above equation and replacing δ±

zTz + δ±zTzzTz > 0

γ(1− 1±
√

1− αγ) > 0

±
√

1− αγ > 0

Hence the positive root is selected:

Xaa = Xa(I + δ+zzT )

= Xa

[
+
−1 +

√
1− (ϕ+ cT

xPacx)−1cT
xPacx

cT
xPacx

Xa
Tcxc

T
xXa

]
The final solution for the two-stage WCETKF analysis anomaly can be found as

Xaa = Xa

[
I + Xa

Tcxc
T
xXa

(
−1 +

√
ϕ(ϕ+ cT

xPacx)−1
)
/cT

xPacx

]
(A24)

which can be also rewritten as

Xaa = XaE = XfAE (A25)

where A is the square-root multiplier matrix that is estimated from the standard ETKF

equations and E is the matrix obtained from the operations within the square-brackets on

the rhs of (A24). This equation implies the two-stage analysis anomaly of WCETKF (Xaa)

can be obtained by first solving for the analysis anomaly of the standard ETKF (Xa) and

then multiplying it by the matrix E.

Similar to the strongly constrained KF solution, a strongly constrained ETKF solution

can be estimated by setting ϕ in (A24) into 0 as

Xaa = Xa −Pacxc
T
xXa/c

T
xPacx (A26)
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It is stressed that the WCETKF analysis anomaly of single-stage (A17) and two-stage

(A24) solutions differ, although they have identical solutions for the analysis error covariance

matrix Paa. In fact, these single-stage and two-stage solutions are two different square root

filters with the same error covariance matrices but with different state analysis anomalies.

It is fairly easy to make the single-stage WCETKF square-root Aaa (A17) symmetric with

the selection of VT = U; whereas for the two-stage filter, it is not immediately clear which

selection for the VT matrix would make the AE term in (A25) symmetric. On the other

hand, it is emphasized that WCEnKF solutions are identical for both single-stage (A9) and

two-stage (A21) constrained filters.

Computationally, both standard (2) and two-stage constrained (A21) KF solutions re-

quire single inverse (HPfH
T + R), where the single-stage constrained KF solution (A9)

requires two inverses [(I + S−1Pf ) and R]. Although the inverse of R can be avoided by

a diagonal observation error covariance matrix assumption, the dimension of the term to

be inverted is higher for the single-stage constrained KF solution than it is for other two

solutions (assuming not all state variables are observed). Hence computationally, the two-

stage solution is similar to the standard KF whereas the single-stage KF solution is more

expensive. The load for the square root filters is the same for all standard ETKF, single-

stage WCETKF, and two-stage WCETKF solutions. They all require single inverse (R) and

single eigenvalue decomposition. Standard ETKF and two-stage WCETKF solutions require

the eigenvalue decomposition of the term XT
f HTR−1HXf (8); this term for the single-stage

WCETKF solution is XT
f (HTR−1H + cxϕ

−1cT
x )Xf (A15).
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Fig. 1. Second soil layer temperature errors of strongly constrained EnKF simulations and
truth run.

45



Fig. 2. (a) Soil temperature and (b) soil moisture errors averaged across soil layers. Hor-
izontal axis: “OBS” refers to observation errors (in green color); “OPEN” refer to open
loop errors (in black color); and “Uncon” and “Con” refer to unconstrained and constrained
filters respectively.
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Fig. 3. (a) Water budget residual variance and (b) Total Column Water Content Change
variance of constrained and unconstrained experiments. True total column water content
change is shown in green bar, open loop water content change in black, unconstrained filter
results in red, and constrained filter results in blue.
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Fig. 4. SM error and residual relation for varying Phi values, where 3-hourly SM and
ST observations are assimilated using 50 ensemble members. Each line represents series
of simulations using 24 different constant ϕ values or 24 different ϕ inflation factors (Both
inflation and constant values were selected as 0.00001, 0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0, 1.2, 1.5, 2, 5, 10, 20, 50, 100, 200, 500, 1000). Single
points represent single simulations of constrained filters with un-inflated ϕ values or of
unconstrained filters. For both constant and inflated ϕ experiments, higher residuals are
result of higher ϕ values and lower residuals are result of lower ϕ values (Inflation or constant
ϕ values increase from left to right for green and red lines). Observation error is also marked
with a black diamond. The residuals and the errors asymptotically approached to those of
unconstrained simulations or strongly constrained simulations as the inflation factors for ϕ
or the constant ϕ value was increased to ∞ or decreased to 0 respectively.
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